Social-DualCVAE: Multimodal Trajectory Forecasting Based on Social Interactions Pattern Aware and Dual Conditional Variational Auto-Encoder

02/08/2022
by   Jiashi Gao, et al.
0

Pedestrian trajectory forecasting is a fundamental task in multiple utility areas, such as self-driving, autonomous robots, and surveillance systems. The future trajectory forecasting is multi-modal, influenced by physical interaction with scene contexts and intricate social interactions among pedestrians. The mainly existing literature learns representations of social interactions by deep learning networks, while the explicit interaction patterns are not utilized. Different interaction patterns, such as following or collision avoiding, will generate different trends of next movement, thus, the awareness of social interaction patterns is important for trajectory forecasting. Moreover, the social interaction patterns are privacy concerned or lack of labels. To jointly address the above issues, we present a social-dual conditional variational auto-encoder (Social-DualCVAE) for multi-modal trajectory forecasting, which is based on a generative model conditioned not only on the past trajectories but also the unsupervised classification of interaction patterns. After generating the category distribution of the unlabeled social interaction patterns, DualCVAE, conditioned on the past trajectories and social interaction pattern, is proposed for multi-modal trajectory prediction by latent variables estimating. A variational bound is derived as the minimization objective during training. The proposed model is evaluated on widely used trajectory benchmarks and outperforms the prior state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset