Solving Partial Assignment Problems using Random Clique Complexes

07/03/2019
by   Charu Sharma, et al.
0

We present an alternate formulation of the partial assignment problem as matching random clique complexes, that are higher-order analogues of random graphs, designed to provide a set of invariants that better detect higher-order structure. The proposed method creates random clique adjacency matrices for each k-skeleton of the random clique complexes and matches them, taking into account each point as the affine combination of its geometric neighbourhood. We justify our solution theoretically, by analyzing the runtime and storage complexity of our algorithm along with the asymptotic behaviour of the quadratic assignment problem (QAP) that is associated with the underlying random clique adjacency matrices. Experiments on both synthetic and real-world datasets, containing severe occlusions and distortions, provide insight into the accuracy, efficiency, and robustness of our approach. We outperform diverse matching algorithms by a significant margin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset