Space-time reduced-order modeling for uncertainty quantification

11/11/2021
by   Ruhui Jin, et al.
0

This work focuses on the space-time reduced-order modeling (ROM) method for solving large-scale uncertainty quantification (UQ) problems with multiple random coefficients. In contrast with the traditional space ROM approach, which performs dimension reduction in the spatial dimension, the space-time ROM approach performs dimension reduction on both the spatial and temporal domains, and thus enables accurate approximate solutions at a low cost. We incorporate the space-time ROM strategy with various classical stochastic UQ propagation methods such as stochastic Galerkin and Monte Carlo. Numerical results demonstrate that our methodology has significant computational advantages compared to state-of-the-art ROM approaches. By testing the approximation errors, we show that there is no obvious loss of simulation accuracy for space-time ROM given its high computational efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro