Sparse Relational Reasoning with Object-Centric Representations

07/15/2022
by   Alex F. Spies, et al.
7

We investigate the composability of soft-rules learned by relational neural architectures when operating over object-centric (slot-based) representations, under a variety of sparsity-inducing constraints. We find that increasing sparsity, especially on features, improves the performance of some models and leads to simpler relations. Additionally, we observe that object-centric representations can be detrimental when not all objects are fully captured; a failure mode to which CNNs are less prone. These findings demonstrate the trade-offs between interpretability and performance, even for models designed to tackle relational tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro