Spectral Perturbation Meets Incomplete Multi-view Data

05/31/2019
by   Hao Wang, et al.
1

Beyond existing multi-view clustering, this paper studies a more realistic clustering scenario, referred to as incomplete multi-view clustering, where a number of data instances are missing in certain views. To tackle this problem, we explore spectral perturbation theory. In this work, we show a strong link between perturbation risk bounds and incomplete multi-view clustering. That is, as the similarity matrix fed into spectral clustering is a quantity bounded in magnitude O(1), we transfer the missing problem from data to similarity and tailor a matrix completion method for incomplete similarity matrix. Moreover, we show that the minimization of perturbation risk bounds among different views maximizes the final fusion result across all views. This provides a solid fusion criteria for multi-view data. We motivate and propose a Perturbation-oriented Incomplete multi-view Clustering (PIC) method. Experimental results demonstrate the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro