Spectral-spatial features for material based object tracking in hyperspectral videos
Traditional color images only depict color intensities in red, green and blue channels, often making object trackers fail when a target shares similar color or texture as its surrounding environment. Alternatively, material information of targets contained in a large amount of bands of hyperspectral images (HSI) is more robust to these challenging conditions. In this paper, we conduct a comprehensive study on how HSIs can be utilized to boost object tracking from three aspects: benchmark dataset, material feature representation and material based tracking. In terms of benchmark, we construct a dataset of fully-annotated videos which contain both hyperspectral and color sequences of the same scene. We extract two types of material features from these videos. We first introduce a novel 3D spectral-spatial histogram of gradient to describe the local spectral-spatial structure in an HSI. Then an HSI is decomposed into the detailed constituent materials and associate abundances, i.e., proportions of materials at each location, to encode the underlying information on material distribution. These two types of features are embedded into correlation filters, yielding material based tracking. Experimental results on the collected benchmark dataset show the potentials and advantages of material based object tracking.
READ FULL TEXT