SPIDER-WEB enables stable, repairable, and encryptible algorithms under arbitrary local biochemical constraints in DNA-based storage
DNA has been considered as a promising medium for storing digital information. Despite the biochemical progress in DNA synthesis and sequencing, novel coding algorithms need to be constructed under the specific constraints in DNA-based storage. Many functional operations and storage carriers were introduced in recent years, bringing in various biochemical constraints including but not confined to long single-nucleotide repeats and abnormal GC content. Existing coding algorithms are not applicable or unstable due to more local biochemical constraints and their combinations. In this paper, we design a graph-based architecture, named SPIDER-WEB, to generate corresponding graph-based algorithms under arbitrary local biochemical constraints. These generated coding algorithms could be used to encode arbitrary digital data as DNA sequences directly or served as a benchmark for the follow-up construction of coding algorithms. To further consider recovery and security issues existing in the storage field, it also provides pluggable algorithmic patches based on the generated coding algorithms: path-based correcting and mapping shuffling. They provide approaches for probabilistic error correction and symmetric encryption respectively.
READ FULL TEXT