Spoken Pass-Phrase Verification in the i-vector Space

09/28/2018
by   Hossein Zeinali, et al.
0

The task of spoken pass-phrase verification is to decide whether a test utterance contains the same phrase as given enrollment utterances. Beside other applications, pass-phrase verification can complement an independent speaker verification subsystem in text-dependent speaker verification. It can also be used for liveness detection by verifying that the user is able to correctly respond to a randomly prompted phrase. In this paper, we build on our previous work on i-vector based text-dependent speaker verification, where we have shown that i-vectors extracted using phrase specific Hidden Markov Models (HMMs) or using Deep Neural Network (DNN) based bottle-neck (BN) features help to reject utterances with wrong pass-phrases. We apply the same i-vector extraction techniques to the stand-alone task of speaker-independent spoken pass-phrase classification and verification. The experiments on RSR2015 and RedDots databases show that very simple scoring techniques (e.g. cosine distance scoring) applied to such i-vectors can provide results superior to those previously published on the same data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro