Stability Of Matrix Polynomials In One And Several Variables

03/20/2022
by   Oskar Jakub Szymański, et al.
0

The paper presents methods of eigenvalue localisation of regular matrix polynomials, in particular, stability of matrix polynomials is investigated. For this aim a stronger notion of hyperstability is introduced and widely discussed. Matrix versions of the Gauss-Lucas theorem and Szász inequality are shown. Further, tools for investigating (hyper)stability by multivariate complex analysis methods are provided. Several second- and third-order matrix polynomials with particular semi-definiteness assumptions on coefficients are shown to be stable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro