STAF: A Spatio-Temporal Attention Fusion Network for Few-shot Video Classification

12/08/2021
by   Rex Liu, et al.
1

We propose STAF, a Spatio-Temporal Attention Fusion network for few-shot video classification. STAF first extracts coarse-grained spatial and temporal features of videos by applying a 3D Convolution Neural Networks embedding network. It then fine-tunes the extracted features using self-attention and cross-attention networks. Last, STAF applies a lightweight fusion network and a nearest neighbor classifier to classify each query video. To evaluate STAF, we conduct extensive experiments on three benchmarks (UCF101, HMDB51, and Something-Something-V2). The experimental results show that STAF improves state-of-the-art accuracy by a large margin, e.g., STAF increases the five-way one-shot accuracy by 5.3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro