Statistical dependence: Beyond Pearson's ρ

09/27/2018
by   Dag Tjøstheim, et al.
0

Pearson's ρ is the most used measure of statistical dependence. It gives a complete characterization of dependence in the Gaussian case, and it also works well in some non-Gaussian situations. It is well known, however, that it has a number of shortcomings; in particular for heavy tailed distributions and in nonlinear situations, where it may produce misleading, and even disastrous results. In recent years a number of alternatives have been proposed. In this paper, we will survey these developments, especially results obtained in the last couple of decades. Among measures discussed are the copula, distribution-based measures, the distance covariance, the HSIC measure popular in machine learning, and finally the local Gaussian correlation, which is a local version of Pearson's ρ. Throughout we put the emphasis on conceptual developments and a comparison of these. We point out relevant references to technical details as well as comparative empirical and simulated experiments. There is a broad selection of references under each topic treated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro