Stochastic Natural Language Generation Using Dependency Information

01/12/2020
by   Elham Seifossadat, et al.
0

This article presents a stochastic corpus-based model for generating natural language text. Our model first encodes dependency relations from training data through a feature set, then concatenates these features to produce a new dependency tree for a given meaning representation, and finally generates a natural language utterance from the produced dependency tree. We test our model on nine domains from tabular, dialogue act and RDF format. Our model outperforms the corpus-based state-of-the-art methods trained on tabular datasets and also achieves comparable results with neural network-based approaches trained on dialogue act, E2E and WebNLG datasets for BLEU and ERR evaluation metrics. Also, by reporting Human Evaluation results, we show that our model produces high-quality utterances in aspects of informativeness and naturalness as well as quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro