Stratified cross-validation for unbiased and privacy-preserving federated learning

01/22/2020
by   R. Bey, et al.
0

Large-scale collections of electronic records constitutes both an opportunity for the development of more accurate prediction models and a threat for privacy. To limit privacy exposure new privacy-enhancing techniques are emerging such as federated learning which enables large-scale data analysis while avoiding the centralization of records in a unique database that would represent a critical point of failure. Although promising regarding privacy protection, federated learning prevents using some data-cleaning algorithms thus inducing new biases. In this work we focus on the recurrent problem of duplicated records that, if not handled properly, may cause over-optimistic estimations of a model's performances. We introduce and discuss stratified cross-validation, a validation methodology that leverages stratification techniques to prevent data leakage in federated learning settings without relying on demanding deduplication algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro