Streaming Punctuation for Long-form Dictation with Transformers

10/11/2022
by   Piyush Behre, et al.
0

While speech recognition Word Error Rate (WER) has reached human parity for English, long-form dictation scenarios still suffer from segmentation and punctuation problems resulting from irregular pausing patterns or slow speakers. Transformer sequence tagging models are effective at capturing long bi-directional context, which is crucial for automatic punctuation. A typical Automatic Speech Recognition (ASR) production system, however, is constrained by real-time requirements, making it hard to incorporate the right context when making punctuation decisions. In this paper, we propose a streaming approach for punctuation or re-punctuation of ASR output using dynamic decoding windows and measure its impact on punctuation and segmentation accuracy in a variety of scenarios. The new system tackles over-segmentation issues, improving segmentation F0.5-score by 13.9 BLEU-score gain of 0.66 for the downstream task of Machine Translation (MT).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro