Stress-hybrid virtual element method on quadrilateral meshes for compressible and nearly-incompressible linear elasticity

04/11/2023
by   Alvin Chen, et al.
0

In this paper, we propose a robust low-order stabilization-free virtual element method on quadrilateral meshes for linear elasticity that is based on the stress-hybrid principle. We refer to this approach as the Stress-Hybrid Virtual Element Method (SH-VEM). In this method, the Hellinger-Reissner variational principle is adopted, wherein both the equilibrium equations and the strain-displacement relations are variationally enforced. We consider small-strain deformations of linear elastic solids in the compressible and near-incompressible regimes over quadrilateral (convex and nonconvex) meshes. Within an element, the displacement field is approximated as a linear combination of canonical shape functions that are virtual. The stress field, similar to the stress-hybrid finite element method of Pian and Sumihara, is represented using a linear combination of symmetric tensor polynomials. A 5-parameter expansion of the stress field is used in each element, with stress transformation equations applied on distorted quadrilaterals. In the variational statement of the strain-displacement relations, the divergence theorem is invoked to express the stress coefficients in terms of the nodal displacements. This results in a formulation with solely the nodal displacements as unknowns. Numerical results are presented for several benchmark problems from linear elasticity. We show that SH-VEM is free of volumetric and shear locking, and it converges optimally in the L^2 norm and energy seminorm of the displacement field, and in the L^2 norm of the hydrostatic stress.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset