Study of Compressed Randomized UTV Decompositions for Low-Rank Matrix Approximations in Data Science

06/08/2019
by   M. Kaloorazi, et al.
0

In this work, a novel rank-revealing matrix decomposition algorithm termed Compressed Randomized UTV (CoR-UTV) decomposition along with a CoR-UTV variant aided by the power method technique is proposed. CoR-UTV computes an approximation to a low-rank input matrix by making use of random sampling schemes. Given a large and dense matrix of size m× n with numerical rank k, where k ≪min{m,n}, CoR-UTV requires a few passes over the data, and runs in O(mnk) floating-point operations. Furthermore, CoR-UTV can exploit modern computational platforms and can be optimized for maximum efficiency. CoR-UTV is also applied for solving robust principal component analysis problems. Simulations show that CoR-UTV outperform existing approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro