Super Interaction Neural Network
Recent studies have demonstrated that the convolutional networks heavily rely on the quality and quantity of generated features. However, in lightweight networks, there are limited available feature information because these networks tend to be shallower and thinner due to the efficiency consideration. For farther improving the performance and accuracy of lightweight networks, we develop Super Interaction Neural Networks (SINet) model from a novel point of view: enhancing the information interaction in neural networks. In order to achieve information interaction along the width of the deep network, we propose Exchange Shortcut Connection, which can integrate the information from different convolution groups without any extra computation cost. And then, in order to achieve information interaction along the depth of the network, we proposed Dense Funnel Layer and Attention based Hierarchical Joint Decision, which are able to make full use of middle layer features. Our experiments show that the superior performance of SINet over other state-of-the-art lightweight models in ImageNet dataset. Furthermore, we also exhibit the effectiveness and universality of our proposed components by ablation studies.
READ FULL TEXT