Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors

by   Zhaoxing Gao, et al.

This paper proposes a novel dynamic forecasting method using a new supervised Principal Component Analysis (PCA) when a large number of predictors are available. The new supervised PCA provides an effective way to bridge the gap between predictors and the target variable of interest by scaling and combining the predictors and their lagged values, resulting in an effective dynamic forecasting. Unlike the traditional diffusion-index approach, which does not learn the relationships between the predictors and the target variable before conducting PCA, we first re-scale each predictor according to their significance in forecasting the targeted variable in a dynamic fashion, and a PCA is then applied to a re-scaled and additive panel, which establishes a connection between the predictability of the PCA factors and the target variable. Furthermore, we also propose to use penalized methods such as the LASSO approach to select the significant factors that have superior predictive power over the others. Theoretically, we show that our estimators are consistent and outperform the traditional methods in prediction under some mild conditions. We conduct extensive simulations to verify that the proposed method produces satisfactory forecasting results and outperforms most of the existing methods using the traditional PCA. A real example of predicting U.S. macroeconomic variables using a large number of predictors showcases that our method fares better than most of the existing ones in applications. The proposed method thus provides a comprehensive and effective approach for dynamic forecasting in high-dimensional data analysis.


page 22

page 23

page 24

page 26


Sufficient Forecasting Using Factor Models

We consider forecasting a single time series when there is a large numbe...

Supervised Linear Dimension-Reduction Methods: Review, Extensions, and Comparisons

Principal component analysis (PCA) is a well-known linear dimension-redu...

Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data

This paper proposes a hierarchical approximate-factor approach to analyz...

Supervised dimensionality reduction for multiple imputation by chained equations

Multivariate imputation by chained equations (MICE) is one of the most p...

Flexible Principal Component Analysis for Exponential Family Distributions

Traditional principal component analysis (PCA) is well known in high-dim...

Inverse Moment Methods for Sufficient Forecasting using High-Dimensional Predictors

We consider forecasting a single time series using high-dimensional pred...

Large-Scale Dynamic Predictive Regressions

We develop a novel "decouple-recouple" dynamic predictive strategy and c...

Please sign up or login with your details

Forgot password? Click here to reset