Supervised Learning with Quantum Measurements

04/02/2020
by   Fabio A. González, et al.
0

This letter reports a novel method for supervised machine learning based on the mathematical formalism that supports quantum mechanics. The method uses projective quantum measurement as a way of building a prediction function. Specifically, the correlation between input and output variables is represented as the state of a bipartite quantum system. The state is estimated from training samples through an averaging process that produces a density matrix. Prediction of the label for a new sample is made by performing a projective measurement on the bipartite system with an operator, prepared from the new input sample, and applying a partial trace to obtain the state of the subsystem representing the outputs. The method can be seen as a generalization of Bayesian inference classification and as a type of kernel-based learning method. One remarkable characteristic of the method is that it does not require learning any parameters through optimization. We illustrate the method with different 2-D classification benchmark problems and different quantum information encodings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro