SURE-tuned Bridge Regression

12/06/2022
by   Jorge Loría, et al.
0

Consider the ℓ_α regularized linear regression, also termed Bridge regression. For α∈ (0,1), Bridge regression enjoys several statistical properties of interest such as sparsity and near-unbiasedness of the estimates (Fan and Li, 2001). However, the main difficulty lies in the non-convex nature of the penalty for these values of α, which makes an optimization procedure challenging and usually it is only possible to find a local optimum. To address this issue, Polson et al. 2013 took a sampling based fully Bayesian approach to this problem, using the correspondence between the Bridge penalty and a power exponential prior on the regression coefficients. However, their sampling procedure relies on Markov chain Monte Carlo (MCMC) techniques, which are inherently sequential and not scalable to large problem dimensions. Cross validation approaches are similarly computation-intensive. To this end, our contribution is a novel non-iterative method to fit a Bridge regression model. The main contribution lies in an explicit formula for Stein's unbiased risk estimate for the out of sample prediction risk of Bridge regression, which can then be optimized to select the desired tuning parameters, allowing us to completely bypass MCMC as well as computation-intensive cross validation approaches. Our procedure yields results in about 1/8th to 1/10th of the computational time compared to iterative schemes, without any appreciable loss in statistical performance. An R implementation is publicly available online at: https://github.com/loriaJ/Sure-tuned_BridgeRegression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset