SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection
One of the key problems in 3D object detection is to reduce the accuracy gap between methods based on LiDAR sensors and those based on monocular cameras. A recently proposed framework for monocular 3D detection based on Pseudo-Stereo has received considerable attention in the community. However, so far these two problems are discovered in existing practices, including (1) monocular depth estimation and Pseudo-Stereo detector must be trained separately, (2) Difficult to be compatible with different stereo detectors and (3) the overall calculation is large, which affects the reasoning speed. In this work, we propose an end-to-end, efficient pseudo-stereo 3D detection framework by introducing a Single-View Diffusion Model (SVDM) that uses a few iterations to gradually deliver right informative pixels to the left image. SVDM allows the entire pseudo-stereo 3D detection pipeline to be trained end-to-end and can benefit from the training of stereo detectors. Afterwards, we further explore the application of SVDM in depth-free stereo 3D detection, and the final framework is compatible with most stereo detectors. Among multiple benchmarks on the KITTI dataset, we achieve new state-of-the-art performance.
READ FULL TEXT