SwishNet: A Fast Convolutional Neural Network for Speech, Music and Noise Classification and Segmentation

12/01/2018
by   Md. Shamim Hussain, et al.
0

Speech, Music and Noise classification/segmentation is an important preprocessing step for audio processing/indexing. To this end, we propose a novel 1D Convolutional Neural Network (CNN) - SwishNet. It is a fast and lightweight architecture that operates on MFCC features which is suitable to be added to the front-end of an audio processing pipeline. We showed that the performance of our network can be improved by distilling knowledge from a 2D CNN, pretrained on ImageNet. We investigated the performance of our network on the MUSAN corpus - an openly available comprehensive collection of noise, music and speech samples, suitable for deep learning. The proposed network achieved high overall accuracy in clip (length of 0.5-2s) classification (>97 and frame-wise segmentation (>93 (>99 our model, we trained it on MUSAN and evaluated it on a different corpus - GTZAN and found good accuracy with very little fine-tuning. We also demonstrated that our model is fast on both CPU and GPU, consumes a low amount of memory and is suitable for implementation in embedded systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro