Symmetry and Algorithmic Complexity of Polyominoes and Polyhedral Graphs

02/24/2018
by   Hector Zenil, et al.
0

We introduce a definition of algorithmic symmetry able to capture essential aspects of geometric symmetry. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov-Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumeration all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity---both theoretical and numerical---with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize properties of polyominoes, polytopes, regular and quasi-regular polyhedra as well as polyhedral networks, thereby demonstrating its profiling capabilities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro