Systematically Exploring Redundancy Reduction in Summarizing Long Documents

11/30/2020
by   Wen Xiao, et al.
0

Our analysis of large summarization datasets indicates that redundancy is a very serious problem when summarizing long documents. Yet, redundancy reduction has not been thoroughly investigated in neural summarization. In this work, we systematically explore and compare different ways to deal with redundancy when summarizing long documents. Specifically, we organize the existing methods into categories based on when and how the redundancy is considered. Then, in the context of these categories, we propose three additional methods balancing non-redundancy and importance in a general and flexible way. In a series of experiments, we show that our proposed methods achieve the state-of-the-art with respect to ROUGE scores on two scientific paper datasets, Pubmed and arXiv, while reducing redundancy significantly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset