TanhSoft – a family of activation functions combining Tanh and Softplus

09/08/2020
by   Koushik Biswas, et al.
54

Deep learning at its core, contains functions that are composition of a linear transformation with a non-linear function known as activation function. In past few years, there is an increasing interest in construction of novel activation functions resulting in better learning. In this work, we propose a family of novel activation functions, namely TanhSoft, with four undetermined hyper-parameters of the form tanh(αx+βe^γx)ln(δ+e^x) and tune these hyper-parameters to obtain activation functions which are shown to outperform several well known activation functions. For instance, replacing ReLU with xtanh(0.6e^x)improves top-1 classification accuracy on CIFAR-10 by 0.46 DenseNet-169 and 0.7 classification accuracy on CIFAR-100 improves by 1.24 2.57

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro