Teacher Improves Learning by Selecting a Training Subset

02/25/2018
by   Yuzhe Ma, et al.
0

We call a learner super-teachable if a teacher can trim down an iid training set while making the learner learn even better. We provide sharp super-teaching guarantees on two learners: the maximum likelihood estimator for the mean of a Gaussian, and the large margin classifier in 1D. For general learners, we provide a mixed-integer nonlinear programming-based algorithm to find a super teaching set. Empirical experiments show that our algorithm is able to find good super-teaching sets for both regression and classification problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro