Technical Report: NEMO DNN Quantization for Deployment Model

04/13/2020
by   Francesco Conti, et al.
7

This technical report aims at defining a formal framework for Deep Neural Network (DNN) layer-wise quantization, focusing in particular on the problems related to the final deployment. It also acts as a documentation for the NEMO (NEural Minimization for pytOrch) framework. It describes the four DNN representations used in NEMO (FullPrecision, FakeQuantized, QuantizedDeployable and IntegerDeployable), focusing in particular on a formal definition of the latter two. An important feature of this model, and in particular the IntegerDeployable representation, is that it enables DNN inference using purely integers - without resorting to real-valued numbers in any part of the computation and without relying on an explicit fixed-point numerical representation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset