Tensor-Free Proximal Methods for Lifted Bilinear/Quadratic Inverse Problems with Applications to Phase Retrieval

07/10/2019
by   Robert Beinert, et al.
0

We propose and study a class of novel algorithms that aim at solving bilinear and quadratic inverse problems. Using a convex relaxation based on tensorial lifting, and applying first-order proximal algorithms, these problems could be solved numerically by singular value thresholding methods. However, a direct realization of these algorithms for, e.g., image recovery problems is often impracticable, since computations have to be performed on the tensor-product space, whose dimension is usually tremendous. To overcome this limitation, we derive tensor-free versions of common singular value thresholding methods by exploiting low-rank representations and incorporating an augmented Lanczos process. Using a novel reweighting technique, we further improve the convergence behavior and rank evolution of the iterative algorithms. Applying the method to the two-dimensional masked Fourier phase retrieval problem, we obtain an efficient recovery method. Moreover, the tensor-free algorithms are flexible enough to incorporate a-priori smoothness constraints that greatly improve the recovery results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro