Tetra-Tagging: Word-Synchronous Parsing with Linear-Time Inference
We present a constituency parsing algorithm that maps from word-aligned contextualized feature vectors to parse trees. Our algorithm proceeds strictly left-to-right, processing one word at a time by assigning it a label from a small vocabulary. We show that, with mild assumptions, our inference procedure requires constant computation time per word. Our method gets 95.4 F1 on the WSJ test set.
READ FULL TEXT