The complexity of 3-colouring H-colourable graphs

04/05/2019
by   Andrei Krokhin, et al.
0

We study the complexity of approximation on satisfiable instances for graph homomorphism problems. For a fixed graph H, the H-colouring problem is to decide whether a given graph has a homomorphism to H. By a result of Hell and Nešetřil, this problem is NP-hard for any non-bipartite graph H. In the context of promise constraint satisfaction problems, Brakensiek and Guruswami conjectured that this hardness result extends to promise graph homomorphism as follows: fix any non-bipartite graph H and another graph G with a homomorphism from H to G, it is NP-hard to find a homomorphism to G from a given H-colourable graph. Arguably, the two most important special cases of this conjecture are when H is fixed to be K_3 (and G is any graph with a triangle) and when G=K_3 (and H is any 3-colourable graph). The former case is equivalent to the notoriously difficult approximate graph colouring problem. In this paper, we confirm the Brakensiek-Guruswami conjecture for the latter case. Our proofs rely on a novel combination of the universal-algebraic approach to promise constraint satisfaction, that was recently developed by Bulín and the authors, with some ideas from algebraic topology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset