The d-separation criterion in Categorical Probability

07/12/2022
by   Tobias Fritz, et al.
0

The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply in measure-theoretic probability (with standard Borel spaces), and therefore provide a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed variables.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset