The error bounds and perturbation bounds of the absolute value equations and some applications
In this paper, by introducing a class of absolute value functions, we study the error bounds and perturbation bounds of two types of absolute value equations (AVEs): Ax -B|x|= b and Ax -|Bx|= b. Some useful error bounds and perturbation bounds for the above two types of absolute value equations are presented. By applying the absolute value equations, we obtain some useful error bounds and perturbation bounds for the horizontal linear complementarity problem (HLCP). Incidentally, two new error bounds for linear complementarity problem (LCP) are given, coincidentally, which are equal to the existing result. Without constraint conditions, a new perturbation bound for the LCP is given as well. Besides, without limiting the matrix type, some computable estimates for the above upper bounds are given, which are sharper than some existing results under certain conditions. Some numerical examples for the AVEs from the LCP are given to show the feasibility of the perturbation bounds.
READ FULL TEXT