The non-monotonicity of growth rate of viscous fingers in heterogeneous porous media

03/19/2023
by   I. A. Starkov, et al.
0

The paper presents a stochastic analysis of the growth rate of viscous fingers in miscible displacement in a heterogeneous porous medium. The statistical parameters characterizing the permeability distribution of a reservoir vary over a wide range. The formation of fingers is provided by the mixing of different-viscosity fluids – water and polymer solution. The distribution functions of the growth rate of viscous fingers are numerically determined and visualized. Careful data processing reveals the non-monotonic nature of the dependence of the front end of the mixing zone on the correlation length of the permeability (describing the medium graininess) of the reservoir formation. It is demonstrated that an increase in graininess up to a certain value causes an expansion of the distribution shape and a shift of the distribution maximum to the region of higher velocities. In addition, an increase in the standard deviation of permeability leads to a slight change in the shape and characteristics of the density distribution of the growth rates of viscous fingers. The theoretical predictions within the framework of the transverse flow equilibrium approximation and the Koval model are contrasted with the numerically computed velocity distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset