The threshold for SDP-refutation of random regular NAE-3SAT

04/14/2018
by   Yash Deshpande, et al.
0

Unlike its cousin 3SAT, the NAE-3SAT (not-all-equal-3SAT) problem has the property that spectral/SDP algorithms can efficiently refute random instances when the constraint density is a large constant (with high probability). But do these methods work immediately above the "satisfiability threshold", or is there still a range of constraint densities for which random NAE-3SAT instances are unsatisfiable but hard to refute? We show that the latter situation prevails, at least in the context of random regular instances and SDP-based refutation. More precisely, whereas a random d-regular instance of NAE-3SAT is easily shown to be unsatisfiable (whp) once d ≥ 8, we establish the following sharp threshold result regarding efficient refutation: If d < 13.5 then the basic SDP, even augmented with triangle inequalities, fails to refute satisfiability (whp), if d > 13.5 then even the most basic spectral algorithm refutes satisfiability (whp).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro