ThreshNet: Segmentation Refinement Inspired by Region-Specific Thresholding
We present ThreshNet, a post-processing method to refine the output of neural networks designed for binary segmentation tasks. ThreshNet uses the confidence map produced by a base network along with global and local patch information to significantly improve the performance of even state-of-the-art methods. Binary segmentation models typically convert confidence maps into predictions by thresholding the confidence scores at 0.5 (or some other fixed number). However, we observe that the best threshold is image-dependent and often even region-specific – different parts of the image benefit from using different thresholds. Thus ThreshNet takes a trained segmentation model and learns to correct its predictions by using a memory-efficient post-processing architecture that incorporates region-specific thresholds as part of the training mechanism. Our experiments show that ThreshNet consistently improves over current the state-of-the-art methods in binary segmentation and saliency detection, typically by 3 to 5
READ FULL TEXT