Tight Concentration Inequality for Sub-Weibull Random Variables with Generalized Bernstien Orlicz norm

02/08/2023
by   Heejong Bong, et al.
0

Recent development in high-dimensional statistical inference has necessitated concentration inequalities for a broader range of random variables. We focus on sub-Weibull random variables, which extend sub-Gaussian or sub-exponential random variables to allow heavy-tailed distributions. This paper presents concentration inequalities for independent sub-Weibull random variables with finite Generalized Bernstein-Orlicz norms, providing generalized Bernstein's inequalities and Rosenthal-type moment bounds. The tightness of the proposed bounds is shown through lower bounds of the concentration inequalities obtained via the Paley-Zygmund inequality. The results are applied to a graphical model inference problem, improving previous sample complexity bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro