TopRank+: A Refinement of TopRank Algorithm

01/21/2020
by   Victor de la Pena, et al.
0

Online learning to rank is a core problem in machine learning. In Lattimore et al. (2018), a novel online learning algorithm was proposed based on topological sorting. In the paper they provided a set of self-normalized inequalities (a) in the algorithm as a criterion in iterations and (b) to provide an upper bound for cumulative regret, which is a measure of algorithm performance. In this work, we utilized method of mixtures and asymptotic expansions of certain implicit function to provide a tighter, iterated-log-like boundary for the inequalities, and as a consequence improve both the algorithm itself as well as its performance estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro