Towards Heterogeneous Multi-core Accelerators Exploiting Fine-grained Scheduling of Layer-Fused Deep Neural Networks

12/20/2022
by   Arne Symons, et al.
0

To keep up with the ever-growing performance demand of neural networks, specialized hardware (HW) accelerators are shifting towards multi-core and chiplet architectures. So far, these multi-accelerator systems exploit the increased parallelism by pipelining different NN layers across input batches on different cores to increase throughput. Yet, when pursuing this with non-batched layer-by-layer scheduling of latency-critical applications, this fails to fully exploit the available HW resources towards energy-efficient execution at the edge. This work, therefore, enables fine-grained depth-first scheduling of layer-fused DNNs onto multi-core architectures through an open-source modeling framework called Stream. Stream is capable of representing a wide range of scheduling granularities and HW architectures and optimizes execution schedules towards minimal energy, minimal latency and/or minimal memory footprint for constrained edge devices. We validate against three SotA HW implementations employing layer-fused scheduling showing tight matching with measured efficiencies. Using Stream in further explorations, we demonstrate that high-level architectural decisions greatly impact hardware efficiency under the fine-grained scheduling paradigm, reducing the energy-delay product from 2.4x for single-core architectures to up to 30x for heterogeneous multi-core architectures compared to the traditional scheduling at layer granularity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro