Towards improving Christofides algorithm for half-integer TSP

07/03/2019
by   Arash Haddadan, et al.
0

We study the traveling salesman problem (TSP) in the case when the objective function of the subtour linear programming relaxation is minimized by a half-cycle point: x_e ∈{ 0 ,1/2 , 1 } where the half-edges form a 2-factor and the 1-edges form a perfect matching. Such points are sufficient to resolve half-integer TSP in general and they have been conjectured to demonstrate the largest integrality gap for the subtour relaxation. For half-cycle points, the best-known approximation guarantee is 3/2 due to Christofides famous algorithm. Proving an integrality gap of α for the subtour relaxation is equivalent to showing that α x can be written as a convex combination of tours, where x is any feasible solution for this relaxation. To beat Christofides bound, our goal is to show that (2-ϵ)x can be written as a convex combination of tours for some positive constant ϵ. Let y_e = 2-ϵ when x_e=1 and y_e= 3/4 when x_e = 1/2. As a first step towards this goal, our main result is to show that y can be written as a convex combination of tours. In other words, we show that we can save on 1-edges, which has several applications. Among them, it gives an alternative algorithm for the recently studied uniform cover problem. Our main new technique is a procedure to glue tours over proper 3-edge cuts that are tight with respect to x , thus reducing the problem to a base case in which such cuts do not occur.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro