Towards More Equitable Question Answering Systems: How Much More Data Do You Need?

05/28/2021
by   Arnab Debnath, et al.
3

Question answering (QA) in English has been widely explored, but multilingual datasets are relatively new, with several methods attempting to bridge the gap between high- and low-resourced languages using data augmentation through translation and cross-lingual transfer. In this project, we take a step back and study which approaches allow us to take the most advantage of existing resources in order to produce QA systems in many languages. Specifically, we perform extensive analysis to measure the efficacy of few-shot approaches augmented with automatic translations and permutations of context-question-answer pairs. In addition, we make suggestions for future dataset development efforts that make better use of a fixed annotation budget, with a goal of increasing the language coverage of QA datasets and systems. Code and data for reproducing our experiments are available here: https://github.com/NavidRajabi/EMQA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset