Towards Optimal Head-to-head Autonomous Racing with Curriculum Reinforcement Learning

08/25/2023
by   Dvij Kalaria, et al.
0

Head-to-head autonomous racing is a challenging problem, as the vehicle needs to operate at the friction or handling limits in order to achieve minimum lap times while also actively looking for strategies to overtake/stay ahead of the opponent. In this work we propose a head-to-head racing environment for reinforcement learning which accurately models vehicle dynamics. Some previous works have tried learning a policy directly in the complex vehicle dynamics environment but have failed to learn an optimal policy. In this work, we propose a curriculum learning-based framework by transitioning from a simpler vehicle model to a more complex real environment to teach the reinforcement learning agent a policy closer to the optimal policy. We also propose a control barrier function-based safe reinforcement learning algorithm to enforce the safety of the agent in a more effective way while not compromising on optimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro