Towards optimal sensor placement for inverse problems in spaces of measures

08/02/2023
by   Phuoc-Truong Huynh, et al.
0

This paper studies the identification of a linear combination of point sources from a finite number of measurements. Since the data are typically contaminated by Gaussian noise, a statistical framework for its recovery is considered. It relies on two main ingredients, first, a convex but non-smooth Tikhonov point estimator over the space of Radon measures and, second, a suitable mean-squared error based on its Hellinger-Kantorovich distance to the ground truth. Assuming standard non-degenerate source conditions as well as applying careful linearization arguments, a computable upper bound on the latter is derived. On the one hand, this allows to derive asymptotic convergence results for the mean-squared error of the estimator in the small small variance case. On the other, it paves the way for applying optimal sensor placement approaches to sparse inverse problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset