Transmission of a Bit over a Discrete Poisson Channel with Memory

11/11/2020
by   Niloufar Ahmadypour, et al.
0

A coding scheme for transmission of a bit maps a given bit to a sequence of channel inputs (called the codeword associated to the transmitted bit). In this paper, we study the problem of designing the best code for a discrete Poisson channel with memory (under peak-power and total-power constraints). The outputs of a discrete Poisson channel with memory are Poisson distributed random variables with a mean comprising of a fixed additive noise and a linear combination of past input symbols. Assuming a maximum-likelihood (ML) decoder, we search for a codebook that has the smallest possible error probability. This problem is challenging because error probability of a code does not have a closed-form analytical expression. For the case of having only a total-power constraint, the optimal code structure is obtained, provided that the blocklength is greater than the memory length of the channel. For the case of having only a peak-power constraint, the optimal code is derived for arbitrary memory and blocklength in the high-power regime. For the case of having both the peak-power and total-power constraints, the optimal code is derived for memoryless Poisson channels when both the total-power and the peak-power bounds are large.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro