Travelling salesman paths on Demidenko matrices
In the path version of the Travelling Salesman Problem (Path-TSP), a salesman is looking for the shortest Hamiltonian path through a set of n cities. The salesman has to start his journey at a given city s, visit every city exactly once, and finally end his trip at another given city t. In this paper we identify a new polynomially solvable case of the Path-TSP where the distance matrix of the cities is a so-called Demidenko matrix. We identify a number of crucial combinatorial properties of the optimal solution, and we design a dynamic program with time complexity O(n^6).
READ FULL TEXT