Tuning Free Rank-Sparse Bayesian Matrix and Tensor Completion with Global-Local Priors

05/27/2019
by   Daniel E. Gilbert, et al.
0

Matrix and tensor completion are frameworks for a wide range of problems, including collaborative filtering, missing data, and image reconstruction. Missing entries are estimated by leveraging an assumption that the matrix or tensor is low-rank. Most existing Bayesian techniques encourage rank-sparsity by modelling factorized matrices and tensors with Normal-Gamma priors. However, the Horseshoe prior and other "global-local" formulations provide tuning-parameter-free solutions which may better achieve simultaneous rank-sparsity and missing-value recovery. We find these global-local priors outperform commonly used alternatives in simulations and in a collaborative filtering task predicting board game ratings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro