Two Cycle Learning: Clustering Based Regularisation for Deep Semi-Supervised Classification

01/15/2020
by   Philip Sellars, et al.
0

This works addresses the challenge of classification with minimal annotations. Obtaining annotated data is time consuming, expensive and can require expert knowledge. As a result, there is an acceleration towards semi-supervised learning (SSL) approaches which utilise large amounts of unlabelled data to improve classification performance. The vast majority of SSL approaches have focused on implementing the low-density separation assumption, in which the idea is that decision boundaries should lie in low density regions. However, they have implemented this assumption by treating the dataset as a set of individual attributes rather than as a global structure, which limits the overall performance of the classifier. Therefore, in this work, we go beyond this implementation and propose a novel SSL framework called two-cycle learning. For the first cycle, we use clustering based regularisation that allows for improved decision boundaries as well as features that generalises well. The second cycle is set as a graph based SSL that take advantages of the richer discriminative features of the first cycle to significantly boost the accuracy of generated pseudo-labels. We evaluate our two-cycle learning method extensively across multiple datasets, outperforming current approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro