Universal Proof Theory: Feasible Admissibility in Intuitionistic Modal Logics

In this paper, we introduce a general family of sequent-style calculi over the modal language and its fragments to capture the essence of all constructively acceptable systems. Calling these calculi constructive, we show that any strong enough constructive sequent calculus, satisfying a mild technical condition, feasibly admits all Visser's rules, i.e., there is a polynomial time algorithm that reads a proof of the premise of a Visser's rule and provides a proof for its conclusion. As a positive application, we show the feasible admissibility of Visser's rules in several sequent calculi for intuitionistic modal logics, including 𝖢𝖪, 𝖨𝖪 and their extensions by the modal axioms T, B, 4, 5, the modal axioms of bounded width and depth and the propositional lax logic. On the negative side, we show that if a strong enough intuitionistic modal logic (satisfying a mild technical condition) does not admit at least one of Visser's rules, then it cannot have a constructive sequent calculus. Consequently, no intermediate logic other than 𝖨𝖯𝖢 has a constructive sequent calculus.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset