Universum-inspired Supervised Contrastive Learning

04/22/2022
by   Aiyang Han, et al.
0

Mixup is an efficient data augmentation method which generates additional samples through respective convex combinations of original data points and labels. Although being theoretically dependent on data properties, Mixup is reported to perform well as a regularizer and calibrator contributing reliable robustness and generalization to neural network training. In this paper, inspired by Universum Learning which uses out-of-class samples to assist the target tasks, we investigate Mixup from a largely under-explored perspective - the potential to generate in-domain samples that belong to none of the target classes, that is, universum. We find that in the framework of supervised contrastive learning, universum-style Mixup produces surprisingly high-quality hard negatives, greatly relieving the need for a large batch size in contrastive learning. With these findings, we propose Universum-inspired Contrastive learning (UniCon), which incorporates Mixup strategy to generate universum data as g-negatives and pushes them apart from anchor samples of the target classes. Our approach not only improves Mixup with hard labels, but also innovates a novel measure to generate universum data. With a linear classifier on the learned representations, our method achieves 81.68 CIFAR-100, surpassing the state of art by a significant margin of 5 much smaller batch size, typically, 256 in UniCon vs. 1024 in SupCon using ResNet-50.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset