Unsupervised Feature Learning for low-level Local Image Descriptors

01/14/2013
by   Christian Osendorfer, et al.
0

Unsupervised feature learning has shown impressive results for a wide range of input modalities, in particular for object classification tasks in computer vision. Using a large amount of unlabeled data, unsupervised feature learning methods are utilized to construct high-level representations that are discriminative enough for subsequently trained supervised classification algorithms. However, it has never been quantitatively investigated yet how well unsupervised learning methods can find low-level representations for image patches without any additional supervision. In this paper we examine the performance of pure unsupervised methods on a low-level correspondence task, a problem that is central to many Computer Vision applications. We find that a special type of Restricted Boltzmann Machines (RBMs) performs comparably to hand-crafted descriptors. Additionally, a simple binarization scheme produces compact representations that perform better than several state-of-the-art descriptors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset