Unsupervised Learning of Temporal Abstractions with Slot-based Transformers

03/25/2022
by   Anand Gopalakrishnan, et al.
0

The discovery of reusable sub-routines simplifies decision-making and planning in complex reinforcement learning problems. Previous approaches propose to learn such temporal abstractions in a purely unsupervised fashion through observing state-action trajectories gathered from executing a policy. However, a current limitation is that they process each trajectory in an entirely sequential manner, which prevents them from revising earlier decisions about sub-routine boundary points in light of new incoming information. In this work we propose SloTTAr, a fully parallel approach that integrates sequence processing Transformers with a Slot Attention module and adaptive computation for learning about the number of such sub-routines in an unsupervised fashion. We demonstrate how SloTTAr is capable of outperforming strong baselines in terms of boundary point discovery, even for sequences containing variable amounts of sub-routines, while being up to 7x faster to train on existing benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro